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ABSTRACT

A computer program is described for the calculation of the zeroes of the

associated Legendre functions, P , and their derivatives, for the calculation
nm

of the extrema of P and also the integral between pairs of successive zeroes.
nm

The program has been run for all n, m from (0, 0) to (20, 20) and selected

cases beyond that for n up to 40. Up to (20, 20), the program (written in

double precision) retains nearly full accuracy, and indications are that up to

(40, 40) there is still sufficient precision (4-5 decimal digits for a 54-bit man-

tissa) for estimation of various bounds and errors involved in geopotential model-

ling, the purpose for which the program was written.
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I. INTRODUCTION

This report describes a computer program for the calculation of data on

the associated Legendre functions of the first kind. These data are useful in the

estimation of bounds for truncation error in the spherical harmonic expansion of

the geopotential, and also for the estimation of bounds on the coefficients in such

an expansion. The application of the results of this calculation to these estima-

tion problems is discussed in References 1 and 2. The accuracy requirements

for estimation purposes are not very stringent, a few significant digits should be

adequate. The program can operate up to degree and order 100; this limitation

is imposed by the dimensioning of various arrays and would be easy to change.

The program has been run from 0, 0 through 20, 20 and appears to have accu-

racy of 8 or 9 significant digits for this range of degrees and orders. Runs

for degrees 30 and 40 with order zero indicate that one can probably run It to

40, 40 with an accuracy of four significant digits. The accuracy can probably be

significantly increased by implementing one or another of the suggested modifica-

tions to the subroutine for finding roots.

In constructing the program, two formulations for the associated Legendre

functions were implemented. In one, z = cos 8, where 0 is the polar angle of

spherical coordinates, is the independent variable. In the other, x - sin2 0/2 is

the independent variable. These two variables are related by

z = 1-2x (1. 1)

and the corresponding associated Legendre functions are given by

(1-z 2 )  * polynomial of degree (n-m)/2 in z2
for n-m even

P (z) f - v/2e (1.2)

S (1-z2) z * polynomial of degree (n-m-1)/2
in z2 for n-ui odd
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P (x) = [x(1 -x) J2 " polynomial of degree (n-m) in x (1.2)
rnm

From Eqs. (1. 2), it would at first appear that the calculation must accommodate

three cases; actually there are six cases, since the extrema of P are found
nm

from the zeroes of the derivative of P with respect to its independent vari-
nm

able, and the derivative must be handled in different ways for m = 0 and m >0.

In addition, there are seven special cases that must be handled separately (e. g.,

one of these is P = constant, for which there are no zeroes, extrema, or inter-
00

val integrals.

The "interval integrals',' mentioned above and in the title, are the integrals,

between successive zeroes of P , with respect to its independent variable.
nm

From Eq. (1.1)

dz = -2dx

x = 0 corresponds to z = 1 (1.3)

X = 1 corresponds to z = -1

The final print-out of the full set of calculations lists the zeroes of P and its
nm

derivative in adjacent columns and in increasing order relative to the variable used.

The associated extrema and interval integrals appear in the third and fourth columns.

Because of the correspondence of the endpoints of the interval of definition of P
nm

indicated in Eq. (1. 3), the results read from top to bottom in the z-formulation

correspond to those read from bottom to top in the x-formulation. The magnitudes

of the zeroes are related by Eq. (1. 1). The extrema should be identical. The in-

terval integrals are related by a factor 2 which comes from Eq. (1.3) (not -2,

since the minus sign is compensated by an interchange in limits of integration

as one transforms from one formulation to the other).
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In any particular run of the program, one formulation or the other is se-

lected by an input switch. The two formulations were implemented because it

seemed likely that they might well complement one another and, as we shall see,

this is indeed the case. In addition, check-out of the program was greatly

facilitated.

Several output options are available through another input switch. The

general flow of the main program is as follows:

1. Input and initialization, including selection of the formulation
to be used.

2. Calculate and print the coefficients of the polynomial parts
of P and P' .

nm nm
Option: Terminate the program at this point and

go to more input at 1

S3. Calculate the zeroes of P and P'
nm nm

Option: Print these zeroes and go to 1

Option: No print; bypass 4 and go to 5

4. Calculate extrema of P by evaluation at the zeroes of P'
nm nm

Option: Print zeroes and extrema and go to 1

5. Calculate the interval integrals using the zeroes of P
nm

Option (only if 4 is bypassed):
Print zeroes and interval integral and
go to 1

6. Print zeroes of P and P' extrema of P and
nm nm nm

interval integrals in tabular form.

7. Go to 1 (with exit if no more data available).

Listings of the main program and all the subroutines are provided in the

appendices. The remaining sections of the report describe the steps listed above
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in greater detail, with references to line and statement numbers appearing in the

listings.

Section II contains a list of the input parameters and a discussion of their

various functions. The branching involved in the six cases mentioned earlier is

also described in Section II. This is followed, in Section III, by the recursion

formulas used to obtain the coefficients of the polynomial parts of P and P'1m rm

and a discussion of the subroutines in which they are implemented.

The zeroes of the polynomial parts of P and P' are calculated by
nm nm

Graeffe's root squaring method, implemented in subroutine GRAEFF. Some in-

teresting problems were encountered, and these problems and their resolution are

described in Section IV. This subroutine presently limits the accuracy of the pro-

gram, and hence the size of degree and order to which it can be applied. The re-

sults of a few test runs are presented, and several possibilities for improvement

of the accuracy are discussed briefly.

The extrema of P are found by direct substitution of the zeroes of P'
nm nm

into P and this is accomplished by subroutines FUNCT and EVAL, which are
nm

straightforward and easily followed from the listing. The interval integrals are

calculated by Gaussian quadrature in subroutine GAUSS, which is also straight-

forward. A few comments on these three subroutines appear in Section V.
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II. INPUT, INITIALIZATION, AND OUTPUT

The major portion of the Main Program is taken up by input, initialization,

and output. The calculations are all done in subroutines, called by the Main Pro-

gram. A listing of the Main Program is given in Appendix A. The references to

symbols, statement numbers, and line numbers in this section apply to the Main

Program. The output section is located between Statements 600 and 800. It fol-

lows the flow indicated in the Introduction with the indicated options implemented

in Lines 20800, 24600, 24800, 31300, and 31800.

A block of 20 integers, IN(20), is reserved for input parameters. A

block of 100 integers, NUM(100), is also used for input under certain conditions.

These blocks are in NAMELISTS IN1 and IN2. The output of the program is

carried in the arrays

C(101) coefficients for the polynomial part of P
nm

CP(102) coefficients for the polynomial part of P'
nm

Z(102) zeroes of P
nm

ZP(101) zeroes of P'
nm

EX(101) extrema of P
nm

FIN(101) interval integrals

The first part of the initialization consists of identifying the input block,

IN, with mnemonic names as follows:

IN(1) = IND = 0 independent variable is z = cos 8

1 independent variable is x = sin2 0/2
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IN(2) = NOPT = 0 a range of degrees equally spaced is desired;
see IN(7), IN(8), and IN(9)

> 0 a list of NOPT degrees to be read into the
block NUM, using NAMELIST IN2 for the input

IN(3) = MOPT = -1 process all orders consistent with each specified
degree

0 process only order MOPT for the specified
degrees

IN(4) = INC: Print Options:

0 compute and print only C and CP

1 compute and print only C, CP, Z, and ZP

2 compute and print only C, CP, Z, ZP,
and FIN

3 compute and print only C, CP, Z, ZP,
and EX

4 compute and print C, CP, Z, ZP, EX,
and FIN

IN(5) = ITMAX maximum number of iterations allowed In
GRAEFF for the calculation of Z and ZP

IN(6) = NI use the zeroes and weight factors for P
in GAUSS (NI+1), 0in GAUSS

IN(7) = IMIN IN7) = IIN process a range of INX
IN(8) = ISTEP degrees starting at IMIN and

IN(9) = INX spaced at ISTEP intervals

IN(10) = NTOL convergence criterion

IN(11) } SCALE = IN(11)**IN(12) See Section IV on
IN(12) GRAEFF.

IN(13) TOL = 10**IN(13) See Section V on GAUSS

IN(14) - IN(20) not used at present



A single error return is provided for several input conditions which might result

in poor functioning of the program.

The second part of the initialization involves setting up the array NUM(1)

in such a way that NUM(I) is the It h degree to be processed, with a total of INX

degrees. This information goes into the main DO loop starting at Statement 44;

DO 1000, I=1, INX followed by N1= NUM(I), where N1 is the degree currently

being processed. For NOPT> 0, NUM is filled from the second READ statement

(Line 4400). The DO loops to 6, 8, and 10 rearrange the degrees read and restore

them to NUM so that

NUM(Il)>NUM(I2) if and only if I1>12

This means that the degrees may be in any order in the data statement. For

NOPT= 0 , Statements 20 and 30 construct NUM so that

NUM(1) = IMIN

NUM(I) = NUM(I-1) + ISTEP

NUM(INX) = IMIN + ISTEP*(INX-1)

Note that the dimensions of 101 and 102 for C and CP imply that the degree

N1 must not exceed 100. For direct input (NOPT> 0) no test is made, but for

NOPT=0, NUM(I) is not permitted to exceed 100 (see DO loop 30).

The third part of the initialization calls subroutine FNORMO (Line 8600);

this step, together with the call to FNORM in Statement 58, is better discussed in

the next section dealing with the calculation of the coefficients in the polynomial

parts of P and P'
nm nm

The fourth part of the initialization sets up IMX and the array MUM,

which do for orders what INX and NUM do for degrees. If MOPT>0, MUM(1)=

MOPT and IMX, the number of orders to be processed is set to 1. If MOPT<0,
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MUM and IMX are defined (inside the DO 1000 I=1,INX loop) to include all

orders consistent with the current value of Ni by the DO 45 loop.

The final step in the initialization is perhaps the most complex; it starts

at Line 10300 near the beginning of the DO 999 loop (which processes all orders

specified for the current N1 value) and extends to Line 20400, just before CALL

COEF. This step sets up the branching procedure for the six cases mentioned in

the Introduction. A basic reason for the large number of cases was the desire to

make use of the symmetry involved in the z = cos 0 formulation to reduce com-

putation time. In this formulation, the polynomial parts of P and P' are
nm nm

2
polynomials in cos2 , so that only their positive zeroes need be calculated and,

from these, only the corresponding extrema and interval integrals need be cal-

culated. The complete set is then obtained from multiplication of this set by + or

-1. Further, there is little point in making GRAEFF find a zero root which is

readily found by factoring.

The parameter KIND identifies the six cases, the special case for each,

and the differences in their treatment. The various parameters listed with KIND

are as follows:

NR = number of zeroes of P to be found by GRAEFF
nm

NRP = number of zeroes of P' to be found by GRAEFF
nm

NC = number of coefficients in the polynomial part of P
nm

NCP = number of coefficients in the polynomial part of P'
nm

NP = number of zeroes of P , including endpoints and
zero, if present

NPP = number of zeroes of P' , including endpoints and
nm

zero, if present

Parameters starting with K are used in the rearranging and augmentation pro-

cesses listed for each value of KIND below.
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The case n = m = 0 is very special; there are no roots, extrema, or

interval integrals. A special printout is provided as soon as this can be detected,

Line number 9200.

For m>1, P' has zeroes at ±1 in the cos & formulation and at 0
2 i

and 1 in the sin 8/2 formulation; these points correspond to zeroes of P
nm

rather than to extrema, at least for the purposes of this report. These zeroes of

P' are ignored in the program and output.
nm

For IND = 0 (cos 6 formulation), most of the zeroes of P and P'
nm nm

are obtained by taking ± the square root of the output of GRAEFF. This formu-

lation consists of four cases, as follows:

KIND = 1: m = 0, n even, special case is n = 2

set of zeroes of P' must be augmented by ZP = 0
nm

extrema corresponding to zeroes of P' are sym-
nm

metric about Z = 0

interval integrals are also s3mmetric about Z = 0

set of interval integrals must be augmented by
1st zero a 1

1 and j
last zero

KIND= 2: m= 0, n odd, special case is n = 1

set of zeroes of P must be augmented by Z = 0
nm

extrema and interval integrals are antisymmetric
about Z = 0

set of interval integrals must be augmented by end-
point integrals

KIND = 3: m>0O, n-m even, special case is n =m

set of zeroes for P must be augmented by Z = ±1
nm

set of zeroes for P' must be augmented by ZP = 0
nm

extrema and interval integrals are symmetric about Z = 0
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KIND= 4: m>0, n-m odd, special case is n=m+1

set of zeroes for P must be augmented by Z = 0, 1
nm

extrema and interval integrals are antisymmetric about
Z=0

For IND = 1 (sin2 8/2 formulation), subroutine GRAEFF gives all zeroes

for P and P' except at the endpoints. The parity of n - m is not significant
nm nm

and we do not exploit the symmetry properties of P and P' about the point
nm nm

x =i

KIND= 5: m = 0, special case is n = 1

output of GRAEFF is used unchanged for zeroes and
extrema

set of interval integrals must be augmented by the
endpoint integrals

KIND = 6: m>0, special case is n =m

set of zeroes of P must be augmented by x = 0, 1
nm

Although not properly a part of initialization, we mention here that in State-

ments 140-220 the positive square roots of the output of GRAEFF are taken (for

KIND = 1,2,3,4) and Z = 0, ZP = 0 are introduced where necessary. The re-

maining rearrangement of all roots, extrema, and interval integrals for output

purposes is carried out in Statements 535-600.

The special cases, identified by ISP = 1, together with KIND, are given

special treatment in Statements 800-910.

A word should be said about values to be used for some of the input parameters.

The principal reason for including ITMAX in GRAEFF was to avoid being trapped in a

loop, in case convergence fails. The test cases run indicate that a reasonable value

for ITMAX is
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ITMAX = 20

since iterations in excess of 20 appear to have no significance. NTOL and

SCALE are defined by IN(10), IN(11), and IN(12). The values used in testing

the program were

IN(10) = NTOL = 14

IN(11) = 1'0

IN(12) = 1 implying SCALE = 10

Utilization of a hexadecimal basis for SCALE with proper adjustment of NTOL

might have computational advantages on the IBM 360.

In all the tests carried out, we set

NI = 9

Some experimentation might show that a lower value could be used, particularly

for small values of N, without sacrificing accuracy. Since there are NI+1

evaluations of the Integrand for each entry into GAUSS, some saving of machine

time could be achieved if lower values of NI yield acceptable results. In the

tests on the program, we set

-12
IN(13) = -12 implying TOL = 10

This parameter is probably not significant for the analysis of P it was intro-
nm

duced so that GAUSS would be a self-contained subroutine, available for any program

in which a Gaussian quadrature would be of use.
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III. CALCULATION OF THE COEFFICIENTS

The coefficients for the polynomial parts of P and P' are calculated
nm am

in three steps for the z = cos 6 formulation; using subroutines FNORMO, FNORM,

and COEF (listings given in Appendix B). For the x = sin2 0/2 formulation, only

FNORM and COEF are required. We start by writing P in the two formulations
nm

as

m/2 n-m)/23
P (z) = (1 - z ) -m)/2C (k) z nm2k) IND 0
n nm

k=O
(3. 1)

n-mn

P (x) = (x(1-x)) (k) x IND
nm nm

k=0

with

C (0) = A , C (0) =A
nm Am nm nm

(n-m-2k)(n-m-2k-1) n-m-2
C (k+1) C (k) k=1,2, j . 1nm 2(k+1)(2n-2k-1) nm 2

(3.2)
- (n+m+k+l) (n-m-k) -C (k+l) C= - (k) , k=1,2, . . .,(n-m)
nm (k+1)(m+k+1) nm

and

A (2n)! (2-6 0)(2n+1)

nm 2 n n (n-m)! (n+m) I

- (n+m) 3)A = ml (2-6 )(2n+1). (nm)(3.3)
nm mi mO (n-m) I

1 m=0
m m [p] = largest integer < pmO 0 m>O 1
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The C (k) appearing here are, of course, not geopotential coefficients. The
nm

factors A and A include the factor
nm nm

(2- ) (2n+1) (n-m) (3.4)mO (n+m) I

which converts conventional associated Legendre functions into the fully normalized

form used by geodesists. The derivatives for the two formulations of P take
nm

the form, for m> 0:

n n-m+
1

lnm 2 cPk) z (n-m+1-2k)

k=O
(3.5)

dP ((m/2) -1) n-m+l
nm - kn = (x(1-x)) CP (k) x

dx nm
k=-O

with

CP (O) =  B = -nA
nm nm nm

m
CP (O) =B = A

nm nm 2 nm

nk = 2 (k)-(n 2 m2 ) (3. 6)CP (k) Cnm(k) - (n - mm
) C (k-1)/(n(2n-1)) (3.6)

k=1,2, [. n-m+12

C (k-1)
nCP (k) nm C[(m+2k)(n2+ n) -m(m+k)(m+k-1)]Cnm (k mk(m+k)

k=1,2, . . .,(n-m+l)

Verification of these formulas is tedious, but straightforward. For m = 0,

things are simpler:
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n-m-1
no nn-m-1-2k]

=O CP (k) zenmlk
dz nO

k=0
(3.7)

dP n-m-idP I 
kno CP (k)z

dx nO
k=O

with

C (0) = B = nA
nO nO nO

C (0) =B A =nO nO nO
(3.8)

n-2k
CP (k) = C (k)

nO n nO

CP (k) = (k+l) C(k+1)

The first step in the calculation of the C's and CP's for the z = cos 8

formulation is to calculate B . This is done in subroutine FNORMO by setting
no,

B00 =0

(3.9)
B =10

and using the recursion relationship

4k2-1
B = 4k-i B (3.10)kO k-1 k-1, 0

FNORMO is called only once during a run, and computes and stores B up tonO
and including the maximum value of n to be processed. B is so simple that

it is calculated when needed in subroutine FNORM.



The second step in calculating the coefficients is carried out in subroutine

FNORM, which computes A , B or A , B m , depending upon the formu-
ra nm nm nm

lation selected. For m = 0, of course, the calculation is trivial. For m>0,

the following recursion formulas are implemented in FNORM.

n-m+l
A n-m+ A m>
nm n+m n, m-1

A = 1 A AO =B In
An = n+ nO no no/

B =-nA
nm nm

(3. 11)
= J(n+m+1)(n-m) m>1

n, m+1 m+l nm

A 2= 2(2n+l)(n +n) ; o= n-
n1 nO

B = A
nm 2 nm

The factor (2 - ) in A and A necessitates starting the recursion from
m nm nm

A and A , rather than from A and A
hl n nO nO

Finally, subroutine COEF, using the output of FNORM, implements the

recursion formulas given in Eqs. (3. 2), (3. 6), and (3. 8) to obtain the C's and

CP's or C's and CP's, depending upon the formulation desired.

No study of the growth of error with the number of passes through these

recursion formulas has been made. It has been noted by S. Pines (Ref. 3) that

care must be exercised in the use of recursion formulas. It is possible that in-

accuracies in the coefficients are responsible for the lack of precision in the

15



determination of the zeroes of P and P' , although the way in which this
nm nm

occurs suggests that other effects dominate any inaccuracy in the coefficients.

This matter is discussed further in the next section.

Note that slight variations appear between the formulas given in this sec-

tion and their implementation in subroutines FNORMO, FNORM, and COEF, be-

cause DO loops cannot start from zero.
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IV. THE GRAEFFE ROOT SQUARING METHOD

The subroutine for finding the zeroes of P and P' ts GRAEFF (AA,
nm nm

N, Z, SCALE, NTOL, ITMAX, IND). The listing is in Appendix C. It calculates

the zeroes of a polynomial of degree N-i, with a coefficient array AA of M

elements, associated with increasing or decreasing powers of the variable according

as IND is 1 or 0. The Graeffe root squaring method is implemented in less than

full generality: An implicit assumption is that the roots are real, positive, and dis-

tinct, a condition fulfilled by the polynomial parts of P and P' , if z is fac-
nm nm

tored from those of odd degree in the cos 0 formulation. The zeroes are stored

in the array Z. The remaining entries in the calling sequence, SCALE, NTOL,

and ITMAX will be discussed later.

First we outline the basic idea of the method; an excellent discussion is

given by Lanczos (Ref. 4). We suppose that

x >x >. . . >x >0 (4.1)1 2 n

are the zeroes in descending order of magnitude of the polynomial

n

A x (4. 2)

k=0

Then

2 2 2
yl x 2 2 >... n x n  (4.3)

are the zeroes in descending order of magnitude of the polynomial

n

SBI Yi (4.4)
l=0
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where

2
B = Ao 0

2
B 1  = A + 2AO A2

B2 = A2 - 2A A3 + 2 A A4
. (4.5)

n-1 2
B = (-1) (A -2A A)

n-1 n-1 n-2 n

n 2
B = (-1) An n

As this process is iterated one obtains, on the Kt h iterate, a polynomial with

coefficients BK ] and zeroes

x (2)> 2 . x (2 5 (4.6)
1 2 n

such that the ratio of the ith to the (1-1) s t  zero becomes arbitrarily small

for all i and sufficiently large K. Using this fact, and the relationship between

the coefficients B[ K ] and sums of products of roots, it is easy to verify that

Bi+ /B ) (4. 7)

(or its reciprocal, depending on IND) converges to the zeroes of the given poly-

nomial. As the iterates of the coefficients B. are constructed, it becomes ap-

parent that they become more and more widely separated in order of magnitude.

Numerically, the method terminates when the separation of the coefficients be-

comes such that

B[K+13 B [K)] 2 (l)1 (4.8)
B (-1) (4
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because the remaining cross-product terms [see Eq. (4.5)] are beyond the word

length of [B LK) . If the word length for the calculation is L decimal digits,

the criterion for termination is thus

[K) [K< [K] 2 L
2 B * B I<LB K 10 -L (4.9).

i+j i-j I

for all relevant values of j. This is essentially the criterion used in GRAEFF,

and L is given the name NTOL, an input quantity.

In this subroutine, the terms contributing to each B. are added on one

at a time from left to right, as shown in Eq. (4.5). An array Kl(I) is defined
1K)

to give the number of terms making up B. from the previous set of coefficients
CK-1 3.

B . When the last term in this sum is beyond the word length of the KI(I)-1

terms already summed, Kl(I) is diminished by 1. When Kl(I) = 0 for all I,

the iteration terminates.

Since both round-off error and machine time can be expected to increase

with the number of iterations, ITMAX, another input quantity, is also allowed

to terminate the iteration, in which case the calculation of the zeroes proceeds

on the basis of the B's so far obtained. In this case, a message is written to-

gether with the array Kl(I), which indicates which of the B's have failed to

converge. An error message is written if any zero is negative, and the calcula-

tion proceeds with the absolute value of such a zero. A standard print states the

number of iterations used on the current entry to the subroutine.

A significant problem in the implementation of Graeffe's method arose be-

cause the iterates of the coefficients grow very rapidly, and soon produce overflows.

To avoid this problem, the parameter SCALE is used to convert all coefficients and

their iterates to values less than SCALE and greater than or equal to 1. Then
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additional arrays are introduced to carry the powers associated with the coefficients;

I. e., for each I

1 < B(I) < SCALE NEXB(I) = power (4.10)

and the actual corresponding coefficient is given by

B(I) * SCALE ** NEXB(I) (4.11)

The program has been run (in double precision) using SCALE = 10,

NTOL = 14 for all orders and degrees of P from 0,0 to 20,20, on the
nm

DEC KA10, which has a mantissa of 54 bits. The indications are that the

zeroes near zero hold 15 decimal digit precision for polynomials at least up to

degree 20. The polynomial parts of P and P' have their largest zeroes
nm nm

near unity and for such a polynomial part of degree 10, the largest zeroes have

10-11 digit precision; for one of degree 20, the precision of the largest zeroes

is only three or four digits. These data on precision were obtained by comparison

of the zeroes of P tabulated by the National Bureau of Standards (Ref. 5), and
no

by comparison of the output from the two formulations. In fact, the availability

of the two formulations probably enables one to go to 40,40 with 7-8 digits of

precision. This is so because the small zeroes of the sin2 8/2 formulation can

be transformed into the zeroes near unity of the cos 8 formulation, while the

small zeroes of the cos 8 formulation are transformed into those near x =

in the sin2 8/2 formulation. Thus, using the "good" zeroes from each of the

two formulations and the symmetry properties, a set of zeroes good to 12 or 13

digits may easily be constructed for 20, 20. Selected cases up to 40, 40 have

been run. The user of the program is cautioned that an ITMAX of 20 will be

exceeded and that overflows may occur for IND = 1, if n-m is appreciably

greater than 20. Both conditions may be ignored since they affect only those

zeroes for which significance is already lost; they must be found by running

IND = 0.
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One would like, of course, to account for the lack of precision of the "large"

zeroes and, if possible, improve the accuracy. An immediate thought might be

that errors in the input coefficients (recall that these are computed by recursion

formulas) are the primary cause. This does not seem likely, however, because

for IND = 0 (cos e formulation) the most important coefficients for large zeroes

are those which start the recursion calculation. Still, all coefficients do ultimately

enter the iterates of B [K3 for the large zeroes, and the possibility cannot be

eliminated without further testing. Another thought is that the round-off error

produced by scaling is the culprit. This possibility has been tested and round-off,

while present, is several orders of magnitude less than the discrepancies observed.

The most plausible, but as yet untested, explanation is loss of significance in the

subtractions implied by Eq. (4. 5). It is possible that combining these terms starting

with the smallest and ending with the largest (in magnitude) might help, at the ex-

pense of machine time spent in the sort. Probably the most practical method to im-

prove the situation is to use the output of GRAEFF as the initial guess to a Newton

procedure.
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V. CALCULATION OF THE EXTREMA AND INTERVAL INTEGRALS

The subroutines for those calculations are straightforward and require little

comment. To obtain the extrema, P must be evaluated at the zeroes of P'
nm nm

This calculation is carried out by subroutines FUNCT (X, F, L) and EVAL (A, N,

M, X, P, IND) (listed in Appendix D). Subroutine EVAL simply evaluates a poly-

nomial of degree N-1 with a coefficient array A (associated with ascending or

descending powers of the variable, according as IND = 1 or 0) at an array X of

M points. These evaluations are returned in the array P. Subroutine FUNCT,

which accepts the array of L evaluation points X, supplies whichever of the

factors (1 - z) , z (1- )m/ 2 ,or x(1-x) m/ is applicable and returns the

values of P in the array F. It appears that the extrema are relatively insen-
nm

sitive to errors in the zeroes of P' . This supports the opinion given in the pre-
nm

vious section that errors in the coefficients C and CP are relatively unimportant.

To obtain the interval integrals, subroutine GAUSS (A , B , NI, ABINT , TOL)

implements the Gaussian quadrature procedure, which is well described by Lanczos

(Ref. 4). Two input options are provided: The zeroes and weight factors for Pk0'

k = 2, 3, . . . ,10, are stored in data statements. The parameter NI selects

those for k = NI+1. A parameter TOL is introduced to avoid difficulties with

small differences: if the limits A, B of the integral to be evaluated satisfy

IA-B I<TOL (5.1)

the subroutine returns the value zero in the output parameter ABINT, and prints

out a message to this effect. Subroutine GAUSS calls FUNCT and then EVAL to

evaluate the integrand where necessary.
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The interval integrals are quite sensitive to inaccuracies in the zeroes of

P , as one might expect, since these inaccuracies will destroy the non-negative
nm

character of the Integrand. However, it is felt that, using both formulations and

symmetry considerations, the interval integrals have 8-10 digits of accuracy up

to 20, 20 and will probably retain 3-4 digits perhaps up to 40, 40, which

should be adequate for the estimation purposes discussed in Reference 2.

It should be mentioned that the program does not implement the construction

of a single table for the zeroes, extrema, and interval integrals utilizing the output

of the two formulations in such a way as to maximize accuracy. The necessary

additions to the program would be easy to insert. Time, however, did not permit

sufficiently detailed examination of the output to determine the points at which the

switch between formulations should be made. These switch points are very likely

functions of m and n, though perhaps sensitive only to the difference n-m.
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06100 CGO TO NEXT CASEI)
06200 GO TO 5
063 0 15 INX=INXw
064V0 GO TO 40
06500 20 IMIN=IN(7)
06600 ISTEPalN(8)
0700 INY1IN(9)
06800 IF (IMINg',T,O) GO TO 2000
06900 IF tISTEPLE,0) GO TO 2000
07000 IF (INX,LE,O) CO TO 2000
0700 00O 30 llINX
07200 1=I-1
0730 NUslI)mIMIN+I1*ISTEP
07400 IF (NUM(I),-LE,100) GO TO 40
07500 WRITE (6#2 5 ) IJNUM(I)Iol
07600 25 FORMAT(C NUM(tf,i4) =ll~,6efGREATER THAN Z00
077 0 C; INX SET TO rpl)
07800 INX=cI
07900 GO TO 40
o0000 30 CONTINUE
0o0 40 MUM(l1)=MOPT
08200 IMX=l
08300 N=NUM(INX)
08400 IF (IlN0,EQ ) 0 TO 44
08500 NisN+1
Ob6f0C CALL FNORMO(NpIND)
0 700 WRITE-(6o42) N #(B0(I),I1, NI)
08800 42 FORMAT (I NORMALIZATION FACTORS FOF P00 TO PNO

08900 C WITH N =f,|3S, AREIf/(10XjiP3025,14)/)
09000 44 00 1000 I?1alNX

090 NI.=NUM(I)
092~0 IF (iNEQ0,) GO TO 765
09300 IF (MOPT',GE,U) GO TO 50
009400 IMXzNI+1
095k0 00 45 J=xIMX
09600 MUM(J)mJwl
09700 45 COr!TINUE
0980o 50 CALL FNORM (NI~MOPT,.ND)
09900 00 999 J~1,lMX

10000o MI=MUM(j)
10100 WRITC (60510) NjsMi g.NOA(J)8(J)
10200 NIMIIM1M
1030I MO0NM1MQ0(NjMM1.2)
1Z4 4f0 IF (1d0,EQX1) MODNM"11.
10500 ISP=o
10600 IF(MI,GT,) GO TO 90
10700 IF (IODNM) 607080
10800 60 NR=:N
10900 NRP2NRwj
11000 NP=NR
11100i KINE=5
11200 IF (N1 MjEQ'1 2.)jPsj
11300 GO TO 130
11400 70 NR:N1MMX/2
i15o0 NRP=tJR~1
11600 NPa2*NR
11700 KInD xl
11800 IF (!I1MM.,EQ2) 1SPo;
11900 K7=2*NR
12000 K1:K7+1
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12 2 40(0 K3 N Q
12 3 kl.OK1 '
12 4 0' K4=K2

12 700K M

128PP Kb9:4K3

12 90 :

o K F3 arK 6

NP=2*NR.I
16 7 0 K1J U z2

1 . 8 , DIF V(I1MMI.EQ'O) I§r-

14 0 0K1:K7+.
14 10 V; K 5 = :4+
14 2 0 2K

14400 W 4 =K 5
1450 <8 =K5

146iNR
147 ' , 9 K,5
1413 j KI = < 5
14900 K3.1K6

I !',L l;AK12:-K6
151..70KF3=va4l

15200
I GO 10 131

154 ,O 90 IF (M'ODN4) 124#100#110

15.140 N=2*Mtf2

1!> 9 il0 IF (\1MM,EQ'j) ISP:1

i12= Q

165;60K5=K2

1670k0 K9=K2

1e~9 K11;K2

17 0 422+

17100
17200
178 KP fJr5

11500 110 (NIYMM1) / 2

1b~A K1=2*NR.3
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182.00 K7mKI
12020 KJSUNR+2.
18b300 K6=K3

18400 K9:K3

18600K12AK3
18700K2.2K3+

1eaoo K4=K2
18900K5:2(2
1 000K8=K2
I v 0K2.~:K2

19200 Z(K2)xl' 0 0
19300 SziD
19400 GO TO 1.30.
1§9500 1.20 NRzN1MM.
19600 MRP:11R41
19700 PJ~cNR+2
198kW K I %'U6
199kW IF (M11. M,EQ'0,I) I§Pal
20000 1.30 NC=NR~2,

20100NCPM'IHP+,
20200 tNpoz;!P"3
216300 IF (M2.,EQ 10) NFP=NP+1l
204kW IF (M1,GTI0) NFPONPw2.
20500 CALL COEF
20600 WRITE (60520)(C K)OK=1,NC)
20700 WRITE (6j530)(CP(K)jK=1,NCP)
20800 IF (IN~C',EQ,0) GO TO 999
209010 IF (I$PEQ,1) GO TO 600
21000 CALL GRAEFF(CDNCi ,SCAL.ENTOLITMAXuIND)
211.00 CALL GRAEFFC- 1 NCPZPSCALENTOLITMAX,1ND)
21.200 GO TO (40s160#1.80#200,2200220) KIND.
22.3i0 2.40 00 .0 K=.eNRP-

21.500 KK=NfP+I-K
21600 ZP(KK.1)zDSORTC.ZP(KKfl
2 170 0 1.50 CONTINUE
2 8 V0 (~D~~~M
21900 ~ C)0D
22000 14 R P CIIR P +t
221.00 GO TO 220
22200 2.60 DO 1.70 KU2.,NR
22300 KKct4R+I*.K
22400 Z(KK+1)=OSQRT(i!(KK))
22500 ZP(K)=SQRT(ZP(K)
22600 1.70 CONTINUE
22700 ?(1)M0Olo
22800 NR4NR4.1
22900 GO TO 220
23000 ISO Do 1.90 KF2.,NR
23100 KKcNR+2.RK
23200 Z(K)c0SQRT(Q(K))
2 30 ZP(KK+1)mDSQRT~tP(KK))
23400 2.90 CONTINUE
2; 5 ?00zon
266Z NRP;'RP+1.
2,3700 GO TO 220
23800 200 n0 21.0 KU1l#NR
23900 KKcNR4.1'K
24000 Z(KK.2.);0S0RT(9(KK)) 28



_40 ?P(K)xOS0RT(ZPCK.))
?42V-0 210 CONTINUE

24400 7p(N4p)=DSQRT(eP(NRP)
24500 NR =:Fi+l
Z460k)f 220 IF(INCr2) 535#24012.50

2 47;.)) 30 C AL. LFUNCT(4.F#EX,Nk.P)
24110 IF (IrC',EQ,3) GO TO !)45
24900 240 X1;0,00
2000 IF JMUtjf'M) 250#250200

2500 250 KK1:i
25200 KK220
25300 GO TO 270
25400 26U KK=
25500 KK2r
25600 270 Do 300 K<KKIONH
20700 X2=Z(K)
2! 8vjo CALL CAUSS(X1.,X2eNI .A8INTsTQC)
25900 Ftr!(K+KK2)=ABI.NT
26000 =X

2610 00 CO'4TINUE
26200 X='0
26300 CALL GAUSS(Xj#X21 NI ,A8INTsTOC)
?6400 FI JHswl+KK2)=AlbINT
26500 GO TO 535
26600 510 FORMAT (0 N = 13#6.XoM afj13#6Xs
26700 Col'UD r- 012/1 NORM FACTORS; A(040)
26800 D.1PU21,14,5Xjf8CNpM) z tU21',14)
269po 520 F(H'1AT (I CO .FFICIENTS FOR PNM AR~j/(6Xl3O2!)j4)/)
270001 530 FORMAT (P COEFF-191ENTS OF PNM PRIME AREII
27100 C/(6X.4P3025,11)
27200 535 IF (KINV1EQ,5) GO TO 600
?7300 IF (K1ND,EQ,6) GO TO-550
27400 IF (MI#GTO0) GO TO 5.7
27500 KF1XK74
27600 KF2:K8+l.
27700 KF4=:.1+1
278[00 KF5zK114il
27900 GO TO 538
28000 537 KF1,K1
28100 KF2;'<8
28200 KF4=KjO
26300 KF5:z<11
28400 538 IF (SIGTO00) F1N(1)m2;D0*FIN~j)
26500 00 540 K:1,KJ

28700i 540 CON'TINUE
28800 00 550 Ko1lo!6
28900 (wKzZK+)
29000 550 CONTINUE

2 100 DO 560 K~l1.
292O KlUK7-#
29300~ K2=K~mK
29400 ZP(Kl)=ZP(K2)
295100 EX(KiJ:EX(K2)
296LAO 555 rIN(KFjvK)FN(KF2"K)
29700 560 CONTINUE
29800 IF (mlEO,0) Fj1N(KFJ)2FIN(j.)
29900 00 571 Ka1.K12
so00 K=00-
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156200 CALL GAUSS(?),iDoJI.F1N(3)#TOL)
156300CALL GAUSS(?(24,lf(2) ,NIFIN(2),TO1 )

.3 & 0 0CO TO 603
666F60 820 (zoD
.700 CALL GAVS5(0',U~4D~N j;() TL

36900 GO TO 903
6 ooo 830 jvjjf

J7300El=C )
5 7 4 V0 CALL GAUSS(w1P,DOI, DoNI ,F1N(l) TOL)

37500GO TO 603
37600 840
377VOF2)00
.578160 (=,D

38000 ?P(14:-ZP(2)
681zoCALL FUNCT(?PpEXp2)
SB-OCALL G4USS(0j~o#,0j&N~,F'IN(2) ,TOL)

3 5 4fo 0GO To 601
65oo 850 ()-~)C2

.38600 ("ALL GAUSS(O'1 UOuZ(1) NI jIN(.) TOL.)

GO TO 900

.39100 ;Pj=l2

.39240E~~Ct)2j0*l
393ZOCALL GAUSS(i7 ,UO7,I,00,NI FIN(1) 1TOL)

3 9 4 L0 GO TO 603

,S 9 6 IF (IND',Ef)'j)N~jx0
.97s'', WRITE (6,910).Z(2.) NX1FIN(1.) FIN(2)
39800 910 FORMAT (f P10 14Ab ONE ?ERO AT0#1P13o2# uANU~ NO
.5990.0 A EXTPEIA, THE INTLRVAL INTEGRALS ARElt/3XtIrROMl

4000 ,1311 TO Z),$#P2!),X4#'jfs5X'FOM Z('. fO

40200 GO 'TO 999
40300 999 C ON T 1N U

40400 1000 CON'TINVE
4LA500GO To 5

4000 200 WRITE (4t 2 010 )
4070 01 FORMAT 0f INPUT INI DEFECTIVE; GO TO NEXT CASE'l
40800 O TO 5

40900 3000 CONTINV
41.000 END
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APPENDIX B - Listing of the Coefficient Subroutines

00100 SUBROUTINE FNORMO (NiaNO)
00200 IMPLICIT REAL*B (APHIw~j)
00300 COMMON /NORMO/Bj1 )
00400 IF (IND -*1)100,0200
00500 10 91)Z0,0000
00600 R(2)=DSQRT(3'0D0)
007f0 00 0 ;I20N
00800 ElI
00900 EISQ=EI*EI
01000 ENUM=0SQRT(4',0DaEISqU,000)

1ilo 8(I+1):ENUM*.BCI)i/(El l,00)
01200 20 CONTINUE.
0130 RETURN
01400 100 RETURN
01500 200 RETURN
01600 END
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010 SUBROUTINE FNQRM(NsMIIN0)
00200 IMPLICIT REAL 08 (AwHtOri)

0000COMMON/NORMO/ HI0(10~1)
0 04 0 0COMMON/NORM/A(!101qlo)

00500 E.N
006010IF (IN0-i) 1.0 I00,Z002

0070LI 1.0 A(1)cU(N~1)/LN
00800 B(2j)=80(N+.)
00900 IF P1i,EQ,10) RETIJRN

010foo IF(MLT,0) NM:N
oiloo IF(M''GT,O) NM2M
01200C a 2,O0*EN/(EN41;gD0)

0o300 IF (M,EQ-11) GO TO 90.

01500 DO 30 1 q 2,NM
O60El I

01 700 0: EwI.,0fN*l

01900 30 CONITINUE
02000 IF(M,GT'10) GO TO 60
LA21 V,0 A(1.)sG(j/EN
02200 NN'N+1
02300 0O 50 Iz3,NN
02400 R(T)Z-DSQRT(BCI))
02500 ACI)z-B(,I)/EN
02600 .50 C0'NT INUE
-027 V0 GO TO 90
02800 60 B(M+l)cmsDS0RTCH(M+j))
02900 Plc8(j/E
03000 RETURN
0.3100 90 C a DSQR1'(C)
03200 BZ9 *
03300 A2=B)E
03400 RETURN
03500 100 EN2PN a EN*(EN+1.,D0)+

035600 C = (2100*ENb61.,0)
O 700 140 A(I)=DSQRT(C)'

O482)0 8(1)z-EN2PN*A(1.)
013940 IF (M,EOQ*0) RETURN
04000 120 A(?)=C*EN2PN*2190

04100 IF (M,L.T',) MM2 N
04200 IF(M',GT'1O) MM=M
04300 DO 130 2p~MM
04400 El a I
045100 E12MI a EI*ElvEt
04600 A( I+1):A I ).(EN2PNwEl2MJ /fEI*EI)
04700 1.30 CONTINUE
04800 1.50 EM a M
04900 IF (MMIEQIM) GO TO 0

05000DO 160 Il1.,MM
0100 Elzi
W) 2 Vi 0A(t+i)mDSQRT(ACt4 11))

05400 1.60 CONITINUE
05500 RETURN

0500 1.80 A(4+1)20SQRTCA(M*1))
05700 B("M)AM+.)*EM/2g.Qd
o!)800 200 RETURN
05900 END
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00100s'JROUTINE COEF
0020)0 IMPLICIT REAL*6CA.H#0O2)
00300 C COfMPVTE COEFFICIENTS OF POLYNOMIAL PARTS OF PNM, PNM PHIME
00400 C INPUT: ORDER NDLLNEE M AND IND TO GIVE FORMULATION DES-IREO
00500 C OUTPUTI NUM9ER NC OF COEFFICIENTS C OF PNM
00600 C NUM9ER NCR 6F COEFFICIENTS CP'OF PNM PHIME
1470 c GOEFICIENrS C(I)i CPUJ)
00800 C INDg~I PN4M GIVEN IN POWLHS OF (COS(THETAf*02 WITH
0 ok C NC=[UN"M+2)/23, NCP= NC+j
~01 C IND:lt PNMl GIVEN IN POWERS OF (SIN(THETA/2)l*02 WhIH
010 C IJC;:NnMp NCPG-N M+1
01.200 C IF M:~l NqCP:NCw1R FOR BOTH FOXmULATIONS
01300 C IND'GT4l MAY 8E USED FOR~ OTHER FORMULATIONS
0 400 CDMMO/NOR/A0),uf11)
02.,5 ro0 CO~lMfl4/COFF/C1,)1P(102),NC.NCPNMstNO

01600NMM=N.,M
~17 ~ ENiM.NMM

0 8fdo ENmN

02200 FN2PfN:.EN*EN4EN
02300 TFC1N01)100s!00,700
02400~ 100 E,'Jh02=ENMM/2',D0
02500~ NMM02=ENMO2

02600Kl=NC-1J
02700TW'ONPv2'D0e*EN+1,,D0

0280'0 TWlNMI.:TWONPl"2 3 DQ0
02900 W0M2,Dl*EM

03S000 FNiENzJM+' 1 D0
0 0 =EM2CW'/EO NJ

03240 3=r-N2PN"EN.EM+TWOM
0330 DO 1.50 Kzl,Kt
034J) EK.uK
03500 TW~OK29O3*EK
(0360~0 C(K+1):wC(K)a(ENMM+2 1DTWOK)(ENMP..TWOK)
O i7[00 1/(TWOK*JTWONPl.wTWOK))
OS600 PKI=*

0 qvl T*E NMM-T WOK )* (ENMP2,,T WOK )/C TWOK
040foo1+2, 00 )*1TWONMIRT WOK?

041.00 S:S+TWOM
04200 150 CONTINUE
04,300 IFCM*,EQl) CO TO 200

_4Z I F( NC ,GE', NCP )fiE.TURN
045100 ENC -NC

046ZO CP(NCP)5CCNC)
04700 RETURN
04800 200 00 21.0 I;2,NC
04900 EI:Il

0500CP( I):(ENMMw 2,O*EI"1.,QJ) )*C( I)
010 210 CONTINUE

0200 RETURN
05300 400 U0 4R0 Ku~,,NMM
fa5 4 V0 EKzK
05500 TWOK=2,00*EK
05 6100 EMPKsEM+EK

0000 EMPK!41=EMPK W4,IDO

05800 ElMPK=EK*LMPK
(65900 Tx(LN2PNaEMPKMI*EMPK)/EKMPK

060 C K..I) T*C (K )
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06100S c(EWl+TWOK)*EN2PN'EM*EMPKM.*EMPK
076200 CP(K+I.)zwS*C(K)/(2tDV*EKMPK)
06300 420 C;o*4TI UE
076400 CP(NCP)zmEN*C(NC)

06500 IF(.GTI)RETVHN*
06600 00 450 K!2,NC!-
06700 7c

06800CP(K)cEK*CCK*I,)
060 450COTIU

0000 RETVRN
070 700 RETURN
0~700 END
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APPENDIX C - Listing of Subroutine GRAEFF

00±00 SUnRmUTINE GRAEFF AiAN,2,SCALENTOLITMAX;IN0)
00200 IMPLICIT REAL*8(A-H,-2)
00300 nIMENSION A(102) AA(i±2),Z(102),B(102),Ki02);
00400 C!EXAi102),NEXB(102)
00500 C ROOTS 7(i) OF A POLYNOMIAL OF DEGREE Nl- BY GRAEFFEIS METHOD

00600 C A(I) IS COEFFICIENT OF X**(N;I), lfI1,2,,oN FOR INO q
00700 C " " OF X**(I -). t FOR INO,GT.0
00800 C ITMAX IS THE MAXIMUM NUMAER OF ITERATIONS
00900 C KTOL TFRMINATES ITERATION ON A CONVERGENCE CRITERION"
01000 iF (N,EQ'i) GO TO 270
otioo iF (NEQ.'2) GO TO 280
01200 ITER ' 1
01300 EN=N
01400 EN02 a EN/2'.000
01500 N02=EN02
01600 0O 10 Ia 1,N
01700 A(i)=AA(I)

01800 SIGiI,0 00
01900 IF (ILEN02) Ki(I)=oii
02000 IF (I.GT.N02) Ki(1)=N.I
02100 NEX=o
02200 TEST A(I)
02300 IF (TEST.'LT.0.D0) SICl 1a- 000
02400 TEST=DABS(TEST)
02500 2 IF (TEST.'LT.SCALE) GO TO 4
02600 TEST=TEST/SCALE
02700 IrEX=NEX*1
02800 dO To 2
02900 4 IF (TEST.GE.1.00D) GO TO 6

0300 ? TEST a TESTOSCALE
03100 NEX=NEX 1I
03200 co Ti 4
03300 6 NEXAiI)=NEX
03400 A(I)=SIGITEST
03500 1i eONTINUE
03600 22 no 100 I1iN
03700 SIG=;1,000
03800 C=A(I)oA(1)
03900 NEXC:NEXA(I)*2.
04001 KSUMKl(l)
04100 IF (Ki(I).,EQ.0) KSUM a 1
04200 39 00 95 K=1,KSUM
04300 IF (Ki(I).EQ'0) 0G T0 75
04400 TERMsA(I+K)*A(I-K)*2,000
0450m NEXT=NEXA(I+K)*NEXA( UK)
04600 NEXO=NEXC-NEXT
04700 IF(IABS(NEXD).LTNTOL) GO TO 45
04800 IF (K,EQ.KSUM) Kj(I)*KSUM"j

0490o GO TO 94
05000 45 IF (CEXODLT.0) GO 70 50
05100 TERM=TERM*SCALE**( NEXD)
05200 C=C+TERM*SIG
05300 CO TO 75
05400 59 C=C*SCALE**(NEXD)
05500 C=C+TERM*SIG
05600 NEXC=NEXT
05700 75 SiGI=i
05800 IFtC.'LT,0,O0)SIGi=1

o5909 =CDABS(C)
06000 81 IF (C0 LT.SCALE) Go TO 85
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06100 c=C/dCALE
06200 NEXCiNEXC*1
06300 GO TO 80
06400 8 IF (C,'GE,1,00) GO tO 90
0650o =C*SCALE
06600 NEXC=NEXCI1
06700 no To 8
06800 9s C=C*SIGI
06900 IF (I(I).EQO,0) GO TO 96
07000 94 SIG=-SIG
07100 95 CONTINUE
07200 96 B(i)=C
0730o NEXBIl)mNEXC
07400 120 ONTiNUE
07500 nO 110 I11,N
07600 IF (KI(I),GT'O) GO TO 120

0770q 110 CONTINUE
07800 60 T0 200
07900 120 !F (ITER'GE.ITMAX) GO TO 180
08000 ITERzITER+1
08100 SIn=,000

08200 O0 130 K=IN
08300 A(K)=B(K)*SIG
08400 NEXAiK)=NEXB(K)
08500 S IG=:SIG
08600 130 CONTINUE
08700 do TO 20
08800 180 WRITE (6,190) (KI(1)I1,sN)

08900 190 FORMAT (' ITMAX EXCEEDEDI K IS',, 0 I5/(3X,15It/))
09000 200 EXp=:.00**(-ITER)
09100 N3=N-1
09200 0O 250 I=1,N3 .

09300 IF (IND) 210,210,220

09400 2i0  N4=N;I
09500 ?1 =:(I.+)/B(I)
09600 NEX2=NEXB(I+1)"NEXB(!)
09700 GO TO 230
09800 220 .1 I(1)/B(Il1)
09900 NEXZzNEXB(I),NEXE9(Ie)
10000 N4=I
10100 230 iF (-1 ,LT.0) WRITE (6,240) N4,21
10200 240 FORMAT (' Z(',I5,) NEGATIVE AND EQUAL TO;E-8'.'8)
10300 21 =DABS(1I )**EXP
10400 X?=NJEXZ
10500 eX:FX~*EXP
10600 7(N4jIl1 *SCALE**EXZ
10700 .250 CONTINUE
10800 WRITE (6,260) ITER

10900 260  FORMAT(l GRAEFF USEDI,13;,ITERATIONS')
11000 RETURN
11100 270 WRITE (6,275)',

11201 275 FORMAT (' POLYNOMIAL IS OF DEGREE 0i NO ROOTS')
11300 RETURN
11400 280 IF (IND.EQ',0) ?(i)u'AA(2)/AA(1)
11500 iF (INO,EQ,i) ?(1)XAA(1)/AAi2)
11600 WRITE (6,285) F(i)
11700 285 PORMAT (' POLYNOMIAL IS LINEARI 2(1) r', iP25,i4)
11801 RETURN
11900 END
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APPENDIX D - Listing of GAUSS and the Function Evaluation.Subroutines

00100 SUPROUTINE FUNCT (XaPL)
00200 IMPLICIT REALo(A*Hq - )
00300 C TO EVALUATE ASSOCIATED LEGENDUE FUNCTIONS PNM AT
00400 C L POITS X, OIITPUT IS L VALUES OF PNM, INO
00500 C INOICATES THE FORMHUATJON USED[
00600 C3MMON/COEFF/G(1l)CP(102),NCNCPN 5 M 9 JND
0 70 oImENSION X(40)lPt49)
00800 EMzM
00900 EMO2=EM/2,000
01000 IF(MN*1) O10BW01200
011 0 10 DO 25 I=1,L
012 0 Y(T)=X(I)*x(l)
01300 2Z CO'JTINUE
r1400 CALL EVAL(CNC(,rY,P.IND)
015, IF (MOD((N-M),2)'EQ,0) GO TO 40
01600 00 30 I v=f,
01700 P(I)=P(I)*X()'(;,00"s-X( )*X(t1))**MQz
01800 30 CONTINUE
01900 RETURN
02000 40 00 50 1,
02100 P(T)=P(I)*(I kJ X( I)OX( ))**EM02
02200 50 CONTINU
02300 RETURN
02400 100 CALL EVAL(C,NC#I4X'PND)
02540 00 11C 1 t1
02600 P(I)=P(I)*(X(I)*(1,0D X(I)))*.EM02
0270 110 CONTINUE
02800 RETURN
029k0 200 RETURN
03000 END
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01 0 SURROUTINE EVAL(ANM,x,P,IND)
S2 ; C EVALUATE A POLYNOMIAL OF DEGREE N4I AT M POINTS X(I)

0 3V C RETURN H VALUES P(1)
0 4 0 C A(I) IS THE COEFFICIENT OF X**(N-I) FOR IND = 0

0 C " " " " " X**ol"1 FOR INONE,0
u0060 IMPLICIT REAL*8 (A-HO.-).

0 7 DIMENSION A(102)X(1~2) P(102)
0080 IF (N,GT,1) GO TO 10
0 Qoo 00 5 K=IPM
OlP 01 p(K)=A(1)
05 il:'g CONTINUE
412% RETURN
13j 1 ie IF (INO,EO,i) GO TO 50
140 DO 4o I=1,M

01500 T=X(I)
01600 y=A(1)*T+A(2)
(01700 IF (N.EQ,2 ) GO TO 35
o18 o 00 3p K=3,N
0190,, Y=T*Y+A(K)
02 00 32 CONTINUE
0210 35 P(I)=Y
o 2 2;,o 4~ CON.T INUE
02300 RETURN
02403 S5 00 80 I=1,M
025 00 T=X(I)
o260, . Y=A(N) *T+A(N-I1)
027 00 IF (N,EU,2) GO TO 75
0280. DO 70 K=3,N
0290 Y=Y*T+A(N+I-K)
03000 72 coT I NUE
03100 75 P(I)=Y
'3 2P0 8C CONTINUE
03300 RETURN
03401 END
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00 00 SUBROUTINE GAUSS(AP,N,ABINT,TOL)
002 o C SUBROUTINE FOR THE INTEGRAL FROM A TO B BY GAUSSIAN QUADRATURE

00300 C Z(J;L) ARE THE FEROES OF THE (L*1)ST LEGENDRE POLYNOMIAL
00400 C W(JL) ARE THE CORRESPONDING WEIGHTS
00500 C CALLS SUBROUTINE FUNCT WHICH DEFINES THE INTEGRANO
00600 C ARINT IS THE OUTPUT
00700 IMPLICIT REAL *8 (A;H,0.2)
00800 DIMENSION 2(5,9), W(5,9),X(10),F(10)
0090, DATA Z/'577350269189626D0, 4*0.00,
0100Q 1 0.'D0, .77459666924148300, 30,0,
01100 2 .339981043584856D, .86113631159405300, 3*0700,
01200 3 .OD .53846931010568300, .9061798459386 640D0 2*0'.00.
01300 4 .23A69186083197D0, .66120938646626500, ,93246951420315200, 30
01400 5 O'.D~, .40584515137739700, P741531185599394000
01500 6 ,94910791234275900, o0.00
01600 7 .183434642495650D0. .52553240991632900,,79666647741362700,
01700 8 .96022985649753600, '.'00,
01800 9 0.00, .32425342340380900, ,61337143270059000i
01900 A .83603110732663600o ,96816023950762600
02000 B .14887433898163100, .43339539412924700, ,67940956829902400,

02100 C .86506336668898500, ,97390652831717200/
02200 DATA W/1,00, 4*0.00,

02300 1 .8888 8b988888900 .'555555555555556D0o3*0'. I
02400 2 .65214515486254600 ,34785484513745400, 3*0','00

02500 3 .56R98888888888900, .47862867049936600,
02600 4 .?36926885056189D0, 2*0'.'D0,
02700 5 .46791393457269100, 36076157304813900D
02800 6 .17132449237917DD, 2*0*00,
02900 7 .41795918367346900, .381830050505119D0o
03000 8 .2797M53914892770, .12948496616887000, 0'00

03100 9 .3626378337836200s .31370664587788700,

03200 A .22238103445337400, .10122853629037600, O0''D0

03300 B .33023935500126D0 ,312347077040003D00 .260610696402935D00
03400 C '.8n648160694857D0 .08127438836157400,,29552422471475300,

03500 D .26926671930999600D .21908636251598200,
03600 E .14945134915058100, ,06667134430868800/
03700 FACM=(;-A)/2'00
03803 IF (DARS(FACM);GT.TOL) GO TO 5

03900 ABINT = 0. 0
0

04000 WRITE (6,2)
04100 2 FORMAT (' (B-A),LT'TOL ABINf SET TO ZERO?)

04200 RETURN
04300 5 FACP=(+A)/2,D00
04400 ABINT9o,D0
04500 EN=N
04600 ENO2=EN/2,D0
04700 MO2=EN02
04800 iF((N-2*NO2).EQ.0) Kia2
04900 IFt(N.2*N02),GT,0) Ki:l
05000 K2=N02+1
05100 K3=2*K2+1
05200 00 10 K=Ki,K2
05300 TEpM=FACM*o(K,N)
05400 X(K)=FACP-TERM.
05500 X(K3 cK)= FACPTERM
05600 1I CONTINUE
05700 IF (K1.EO'1) GO TO 15
05800 X(i)=FACP

0590 LN
06000 CALL FUNCT(X#F,L)
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0610-1 60O 21 K:KIK2
06200~ A8INTmABINTCF(K)+FCK3-K ))*W(KN)
06301 22 , ON T iN JE
0640(3 1F Ki , Q'I) GO TO 25
06500, ABINT=ABINT+F(I)*W(IN)
06600 210 ABINt=ABINT.FACM
06700 RETURN
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